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ALTOMATIC docking of orbiting spacecraft is a cru- 
cial operation that involves idenufication of vehicle orien- 
tation as well as complex approach @ namm. Success de- 
pends on the chaser spacecraft's abilin. to recognize the 
target spacecraft w i h n  a scene and aclueve accurate 
closing maneuvers. In a video-based vision system. a tar- 
get scene must be captured and transformed into a pattern 
of pixels. Successful recognition lies within the procedure 
that interprets this pattern. Due to their powerful pattern 
recognition capabilities, artificial neural ,.<works offer a 
potential role in the lnterpremtion process. and hence. in 
automatic docking. Neural networks possess many attrac- 
tne features. The!- have an inherent abihp to reduce the 
amount of computatlon tlme requlred by esisting image 
processing and control software. In addtion. it has been 
shown that neural nets are capable of recognizing and 
adapting to changes in their dynamlc emironrnent. ena- 
bling enhanced performance. redundanq and fault toler- 
ance Most neural nemorks are also robust to failure. that 
is. t h e  are capable of cont~nued operation with a slight 
degradation in performance after minor failures This pa- 
per w l l  dscuss the parricular automatic doclung tasks 
which neural networks are capable of performing Tine 
goal is to establ~sh neural networks as viable alternatives 

system so that the control system may initiate appropnate 
maneuvering commands for the propulsion system. 

Automatic recognition of a target can be curnber- 
some. especially when the images contain with 
struchired backmund clutter. foreground visual obsuuc- 
tlon. and varying intensity levels witlun the digtized im- 
ages themselves [ I  1. The task is adhtionally complicated 
for automatic doclung [ 2 ] ,  due to the @-mimic environ- 
ment which the spacecraft may encounter (e.g.. sun shad- 
ows, tumbling target obstructed view of docking mecha- 
nism, and possible confusion caused by background ob- 
jects). 

In overcoming these difficulties. the realization of a 
fully automated sptem offers many attractive potenual 
pa!offs. These reuards include lowered mission costs. re- 
duced risk factors for unmanned missions. increased am- 
tude capabilip for satellite senicmg, space debris capture. 
reboosting of spacecraft in decaying orbits. and orbml re- 
supply 131. 

In the riel? section. some conventional techniques 
'king considered for incorpxauon in automat;; docking 
systems wi!l be esam~ned. These include gstems using 
radar. laser-based sensors, and video-based sensors The 
concluding section ail1 examine how neural networks 
rnny offer viable solutions t? the problems encountered 
with the proposed convrntional techniques. 

ISTRODL-CTI~S 

ALTOMATIC docking of spacecraft is a challenging 
problem that demands the maturation of developing tech- 
nologies. Upon recognition of a target during rendenous. 
the chaser vehicle must perform a sequence of proximity 
rnaceuvers to accomplish the mechanical latching with 
the target spacecraft (Figure 1). The processing systems 
onboard the chaser must reliably ident@, extra& and 
process target information within a possibly obstructed 
image scene. This processing must be ~epeatedly provided 
during vetucle closing maneuvers (Figure 2). Target atti- 
tude and position data must be determined by the vision 

A spacecraft's success in performing doclung ma- 
neuvers is dependent on the accuacy of its sensors. Accu- 
rate range and range-rate information is required to main., 
lain proper closure and avoid collision with the target 
spacecraft 141. 

Radar can w d e  tlus information to some degree. 
The SGviet space program had performed automated ren- 
dezvous and docking since 1967. using radar-based sys- 
tems. Ir. such systems, the relative positions of two space- 
craft are determined by the variation in signal strengths 
between antennas [ 5 ] .  
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Figure 1. Chaser and Target Vehrcles durrng rendezvous. 

It has been incorrectly perceived that the Soviet; 
used automatic control for all docking missions [6] .  De- 
spite regular success of automatic dockings of ~ I U n a ~ e d  
resupply ships with the M u  and Salj-ut space stations, 
automatic dockings of manned vehicles with the stations 
have been rare, if at all. The automated system has been 
routinely overridden in favor of manual docking. Reasons 
cited for failures mere c mputer overloads, loss of radar 
signals, and antennae malfunctions [j]. Also, it should be 
noted that as the two spacecraft approach close proximity, 
radar range accuracy is influenced by multi-path problems 
and saturation of radar frequency signals. It follows that a 
more precise sensing technique is needed for reliable 
automatic docking. 

An Automated Rendezvous and Capture (ARC) task 
team ha.. been formed at NASA's Marshal! Space Flight 
Center (MSFC) to develop a ground-based simulation for 
rendezvous and docking two unmanned spacecraft [7]. 
The docking maneuvers are planned to be controlled by a 
laserlvideo-based system that detects three retroreflective 
sensxs embedded on a modfied Reaote Manipulator 
(RMS) target located on the target spacecraft by using la- 
sers operated at two different wavelengths. Image scenes 
obtained using laser diode illumination will contain spots 
corresponding to desired reflection from the reuoreflectors 
and other reflections [8]. Signal-to-noise enhancement is 
achieved by subtracting the non-diluminated scene from 

the target scene ~lluminated by the laser diodes. Onboard 
processing of the relative position of the three retroreflec- 
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Figure 2.  Image Pipeline Process of Chaser SpacecraJ. 
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tors (nithrn the video Images) wll provide range and 
translation displacement as well as relative atutude errors. 

Th~s  techmque has reasonable chance of success for 
a space-based mission given the restrictions in whch it 
must operate. One restriction is that the method is de- 
signed to detect attitude stabillzed targets (i.e., no tum- 
bllng. spinning, coning) and m e  fail if the target sud- 
denly starts e.dubiting d!namic behavior 171. Another re- 
striction is that the chaser spacecraft must always ap- 
proach the target spacecraft so that the reuoreflective s e ~  
sors are consistently in the field of view (with no obsuuc- 
tive objects) and that the sensors are properly oriented in 
an upright position [a]. Also, although sun lighting of the 
target vehicle during doclung maneuvers may be desir- 
able. direct or reflected sunlight may interfere with the 
optical s e w n  (91. Adltionally, it should be pointed out 
that initial detectiort and identification of the three ret- 
roreflective sensors are non-trivial in a severe noise envi- 
ronment. In other words, the signal-to-noise enhancement 
may not be able to eliminate every false spot. causing 
misidenM1cation of the three sensor dots [8]. It follows 
that the lack or loss of laser signal feedback from the tar- 
get spacecraft would cause an abort from the attempted 
rendezvous [9]. Given these reasons. one may deduce that 
the ARC method lacks the ability to adapt to an unstable 
Urset and to environmental changes. A more adaptable 
method ma! be needed for a general case solution to the 
possible complexities of automatic docking. 

Image-based (video) ?stems using such methods as 
Fast Fourier Transforms (FFTs) or qntactic pattern rec- 
ognition. offer many a&antages such as rqlative hardware 
simplicity and reprogrammability [lo]. These advmtages 
must be weighed against the divdvantages of these sys- 
tems. such as limited operational range. response time 
Ilmitations. poorer accuracy at greater distances. and sen- 
sitivity to lightlng conditions. However, with properly de- 
signed algorithms and targets, these disadvantages can be 
minimized for many important vision applications [lo]. 

The Intent of this paper is not to enumerate all of the 
conventional techruques but to provide adequate infonna- 
tion for companson to neural network methods. Table 1 
lists some of the many technologes embedded in con- 
ventional techmques. The next -on will discuss how 
neural network techniques can be embedded in a vision 
system for video-based automatic doclung. The objective 
is to develop a scheme which overcomes t h ~ ;  previously 
stated limitations associated with conventional techruques. 
The schcme will focus on using self-adapting neural net- 
works. since they offer promise for successful recognition 
In the dynamic environmenr in which the chaser space- 
crafl must operate. 

Radar 
Laser-based sensors 
Video-based sensors 

Global Positioning System (GPS) 
Fast Fourier Transforms (FFTs) 

Portable/programmable optical hardware 
Optical Correlato~ 

Table 1. Some Technologies of Conventional Techn~ques 

THE primary function of a vision system for auto- 
matic doclung is to determine the three-dimensional rela- 
tive position and attitude of a target vehicle from a two- 
lmensional image representation [I I]. Successful recog- 
nition relies on the system's ability to correctly interpret 
the image scene. Problems that plague systems containing 
conventional vision techmques are caused by the enor- 
mous computational power required to process images 
[12]. It should be noted that many of the required compu- 
tatiorts for target recognition can be acheved simultane- 
ously (i.e.. in parallel). Furthermore. parallel~sm becomes 
rz%ntial in obtaining the rea!-tune throughput required 
for automatic docking. 

Due to their po~erful pattern recogmuon capabilities 
and thelr massively parallel nature. neural networks are 
viable candidates for vision applications, and hence for 
automatic docking. Biologicall! inspired, a neural net- 
work 1s a sq;*em of highly interconnected processing units 
(called neurons) that can mod@ their dynamic behavior 
in response to their environment [13]. Neural networks 
have many ad\ mtages (Table 2). They are capable of 
making decisions at high-speed wUle maintaining fauit 
tolerance, that 1s. they are capable of continued operation 
after moderate failures of indnidual components. Possess- 
ing th~s  robust feature, they produce reliable results in the 
presence of noise or contralctory infomution. [IJ]. T h e  
also learn from experience and are capable of generaliz- 
ing. Generalization allows a network to respond to (partial 
or incomplete) input thai it has never seen before. Robust- 
ness and generalization provide a neural network the ca- 
pability to self-adapt to changes in a dynamc environ- 
ment. Given these attractive characteristics, one cul con- 
clude that neural networks make plausible candidates for 
performing automated vision tasks. For a more intense de- 
scription of neural network. and speclfic archtectures see 
[121, [131,[151, and [161. 
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l'ablz 2. Some Characteristics of .Veural .Vetworks. 

It is the responsibility of the vision system ta provide 
reliable position and attitude information to the control 
system (Figure 3). A proposcd vision system for the chaser 
spacecraft, based on neural net techruques, consists of five 
major components: 1) image acquisition and digitization, 
2) image compression. 3) edge detection. 4) image nor- 
malization, and 5 )  target attitude determination. Note that 
each component performs a specific task, gwen its se- 

- - 

Vision System 
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quential position w i h n  the image processing pipeline 
(Figure 3). The following e.xample illustrates the opera- 
tions performed by these components. The image aquisi- 
tion and dtgitization component. consiang of a video 
camera and frame grabber. 1s subjected to a target scene. 
An analog signal of the target is captured and dig~tized 
into a 256 x 256 pixel image. Image compression reduces 
the image to a 32 x 32 pixel image. A contour of the target 
is then extracted using edge detection. The contoured im- 
age is centered and then scaled by an image normalization 
procedure. In the process of doing so, the translational 
displacement is calculated and supplied to the control sys- 
tem. The docking target attitude determination component 
calculates the rotational Qsplacment of target from the 
normalized contoured image. The rotational hsplacement 
is then output to the control system. 

The individual components of the vision system will 
now be examined for possible replacement by neural net- 
works (Table 3). The function of the image compression 
component is to reduce the 256 s 256 image provided by 
the frame grabber down to a 32 x 32 pixel image. Reduc- 

Control System 

Figu . . Automatic Docking Tasks. 
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lng the lmagc sue ma: be necessary to obtain the requ~red 
real-time throughput. Conventional algorithms. such as 
pisel averaging techniques. exist that can perform the re- 
quired compression (141. Howevcr, if the compression 
cannot be performed within the maximum time allowed 
(to achieve real-time thro~;ghput). another approach is 
~arranted. By tak~ng advantage of the parallel power of 
neural nets, computational speeds can be maximized. 
Add~tionally, compressing the 256 x 256 image may be to- 
talli. unnecessary. if the vision svstenl meets the required 
throughput. Assuming image compression is essential, the 
counterpropagation network is a possible candidate for the 
task. Counterpropagation combines the Kohonen self-or- 
ganizing feature map network with the Grossberg outstar, 
creating a three-layer paradigm possessing functionaliq 
not available in either alone 115). This type of network is 
ilsually trained to perform pattern mapping (161. Fc;r ex- 
ample, a pattern (image) of pixels can be mapped into an- 
othel piinem of pixels of reduced size Suppose that each 
image is dwided into subimage regions [13]. Each subim- 
age is then divided into pixels, which can be grouped into 
a v ~ t o r .  For a 256x256 pixel image, let each subimge 
be an 8 x8  pixel region. Ttus results in 32 x 32 regons to- 
tal. Each region represents a vector input into the coun- 
terpropagation net. The net is then trained to output a 
predetermined average or thresholded pisel value repre- 
senting the transformed region. Note each 8 s 8 pisel rr - 
gion of the 256~256  pixel image is mapped to 1 pixel 
w h ~ n  the 32 x 32 pixel image, resulting in a compression 
ratio of 8: 1. 

Component Neural Network 
image compression counterpropagation 
edge detect~on lateral inhibition 
Image normaliation Kohonen 
target attihde determination counterpropagation 

Table 3. 1 isron Wstem components and therrpossible 
neurul net implementations. 

L 4 

The next step in the vision system processing pipe- 
line is to perform edge detection on the compressed im- 
age. The approach is to idenufy contour boundaries within 
the image having d~stinct intensity values. A neural net 
well suited for this task is the lateral inhibition network 
[16]. The network is based on the lateral itdubition that 

$ occurs naturally in the auditory and visual biological sys- 
tems. The edge-enhance properties of this network allow 
~t to process noisy data in order to emphasize edge 
contrast. Within borderline edge areas of the input imge, 
adjacent pixels having different intensity values will be 
enhanced in the outuut image. That is, light pixels will 
become lighter and dark pixels will become darker. The 

image can be further thresholded to produce a 32 x 32 br- 
nary image consisting of a welldefined contour of the tar- 
get. 

The image normalization component centers the tar- 
get within the scene and rhcn scales it to some predefer- 
mixd focal point. 3uring Uus procedure, the translational 
displacement of the target can be computed and provided 
to th,; control system. The Kohonen selfsrganizing fea- 
tdre map is a good candidate for performing both the cen- 
tering a.id scaling. This nelwork specidizes in character- 
izing the distribution of its input - in this case, the con- 
tour ot th - rget. The contour center is calculated and the 
contou .> centered within the image. A stored reference 
contour, representing the target at a designated orientation 
and distance, is then matched against t+e centered con- 
tour. The amount the centered contour must e m d  or 
shrink determines the scale factor f o ~  scaling the o u p !  
image. 

Determining the target attitude is a complicated task. 
The function of' the target attitude determination compo- 
nent is to take the normalized image and produce the ro- 
tational displacement for input into the control system. If 
ample training data is available, a cmnterpropagation 
network can be configured to reliably perform this task. 
Presented a training set of contoured images obtained 
from a systematic set of designated reference images. the 
network can learn to associate each training image with 
the correct attiP~de of the target vehic!e [l':. During op- 
eratlon, the trained network can drhmine the target atti- 
tude by interpolating betwen its bestmatclung stored Im- 
ages. Another advantage of using counterpropagation to 
perform the task is its ability to generalize on partially in- 
complete or pal ..ally incorrect input [13]. This enah!es 
successful recognition of a target within a degraded scene 
- such as the event that occurs when the target is sud- 
denly casted ~ i t h  sun shadows. 

Simulation of this propose: , w!cm can fur- 
ther measure the plausibili~ . e m 1  net tech- 
niques before a space-b, ,,d rri~ .( I . ,  rmpteif Table J 
comFr a neural ndmsed sq . I L ~  c E . . : using 
the w; ,enlional laserlvideo (ARC. 4.1,:: ,U 

THE objective of this paper has been io: 1) acknowl- 
edge the di3culties in implementing a kisic n system for 
autoinaiic spacecraft docking, 2) examine conventional 
vision techmques for weaknesses that could affect mission 
success, 3) emphdze the strengths of neural networks 
that overcome these weaknesses, and 1) establish neural 
networks as plausible alternatives to conventional tech- 
~iques being conidcred for actual deployment. 

In conclusion, conventional vision techmques such 
as the IaserMdeo based method should perform ade- 
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quatel nlthin the restrictions lmpsed on them. The con- 
\ entional methods need des~gn enhancements for adapting 
in a dynsmi.: en\ironment. However. neural networks are 
capable of adaptation Due to their powerful pattern rec- 
ognitlon and fault tolerance skills. neural nets provide a 
potential ahernalive for the design of an automatic doc!.:- 
!ng system. 
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